Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems

نویسندگان

  • Ernesto G. Birgin
  • R. A. Castillo
  • José Mario Martínez
چکیده

Augmented Lagrangian algorithms are very popular tools for solving nonlinear programming problems. At each outer iteration of these methods a simpler optimization problem is solved, for which efficient algorithms can be used, especially when the problems are large. The most famous Augmented Lagrangian algorithm for minimization with inequality constraints is known as Powell-Hestenes-Rockafellar (PHR) method. The main drawback of PHR is that the objective function of the subproblems is not twice continuously differentiable. This is the main motivation for the introduction of many alternative Augmented Lagrangian methods. Most of them have interesting interpretations as proximal point methods for solving the dual problem, when the original nonlinear programming problem is convex. In this paper a numerical comparison between many of these methods is performed using all the suitable problems of the CUTE collection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems

One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...

متن کامل

An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems

‎By p-power (or partial p-power) transformation‎, ‎the Lagrangian function in nonconvex optimization problem becomes locally convex‎. ‎In this paper‎, ‎we present a neural network based on an NCP function for solving the nonconvex optimization problem‎. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...

متن کامل

A smoothing augmented Lagrangian method for solving simple bilevel programs

In this paper, we design a numerical algorithm for solving a simple bilevel program where the lower level program is a nonconvex minimization problem with a convex set constraint. We propose to solve a combined problem where the first order condition and the value function are both present in the constraints. Since the value function is in general nonsmooth, the combined problem is in general a...

متن کامل

A Three-field Augmented Lagrangian Formulation of Unilateral Contact Problems with Cohesive Forces

We investigate unilateral contact problems with cohesive forces, leading to the constrained minimization of a possibly nonconvex functional. We analyze the mathematical structure of the minimization problem. The problem is reformulated in terms of a three-field augmented Lagrangian, and sufficient conditions for the existence of a local saddle-point are derived. Then, we derive and analyze mixe...

متن کامل

Decomposition Strategies for Nonconvex Problems, a Parametric Approach

This thesis deals with the development of numerical methods for solving nonconvex optimisation problems by means of decomposition and continuation techniques. We first introduce a novel decomposition algorithm based on alternating gradient projections and augmented Lagrangian relaxations. A proof of local convergence is given under standard assumptions. The effect of different stopping criteria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2005